Oxidization without substrate unfolding triggers proteolysis of the peroxide-sensor, PerR.

نویسندگان

  • Bo-Eun Ahn
  • Tania A Baker
چکیده

Peroxide operon regulator (PerR) is a broadly conserved hydrogen peroxide sensor in bacteria, and oxidation of PerR at its regulatory metal-binding site is considered irreversible. Here, we tested whether this oxidation specifically targets PerR for proteolysis. We find that oxidizing conditions stimulate PerR degradation in vivo, and LonA is the principal AAA+ (ATPases associated with diverse cellular activities) protease that degrades PerR. Degradation of PerR by LonA is recapitulated in vitro, and biochemical dissection of this degradation reveals that the presence of regulatory metal and PerR-binding DNA dramatically extends the half-life of the protein. We identified a LonA-recognition site critical for oxidation-controlled PerR turnover. Key residues for LonA-interaction are exposed to solvent in PerR lacking metal, but are buried in the metal-bound form. Furthermore, one residue critical for Lon recognition is also essential for specific DNA-binding by PerR, thus explaining how both the metal and DNA ligands prevent PerR degradation. This ligand-controlled allosteric mechanism for protease recognition provides a compelling explanation for how the oxidation-induced conformational change in PerR triggers degradation. Interestingly, the critical residues recognized by LonA and exposed by oxidation do not function as a degron, because they are not sufficient to convert a nonsubstrate protein into a LonA substrate. Rather, these residues are a conformation-discriminator sequence, which must work together with other residues in PerR to evoke efficient degradation. This mechanism provides a useful example of how other proteins with only mild or localized oxidative damage can be targeted for degradation without the need for extensive oxidation-dependent protein denaturation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PerR controls oxidative stress resistance and iron storage proteins and is required for virulence in Staphylococcus aureus.

The Staphylococcus aureus genome encodes three ferric uptake regulator (Fur) homologues: Fur, PerR, and Zur. To determine the exact role of PerR, we inactivated the gene by allelic replacement using a kanamycin cassette, creating strain MJH001 (perR). PerR was found to control transcription of the genes encoding the oxidative stress resistance proteins catalase (KatA), alkyl hydroperoxide reduc...

متن کامل

Regulation of the Bacillus subtilis fur and perR genes by PerR: not all members of the PerR regulon are peroxide inducible.

PerR is a ferric uptake repressor (Fur) homolog that functions as the central regulator of the inducible peroxide stress response in Bacillus subtilis. PerR has been previously demonstrated to regulate the mrgA, katA, ahpCF, hemAXCDBL, and zosA genes. We now demonstrate that PerR also mediates both the repression of its own gene and that of fur. Whereas PerR-mediated repression of most target g...

متن کامل

Peroxide stimulon and role of PerR in group A Streptococcus.

We have characterized group A Streptococcus (GAS) genome-wide responses to hydrogen peroxide and assessed the role of the peroxide response regulator (PerR) in GAS under oxidative stress. Comparison of transcriptome changes elicited by peroxide in wild-type bacteria with those in a perR deletion mutant showed that 76 out of 237 peroxide-regulated genes are PerR dependent. Unlike the PerR-mediat...

متن کامل

Campylobacter jejuni contains two fur homologs: characterization of iron-responsive regulation of peroxide stress defense genes by the PerR repressor.

Expression of the peroxide stress genes alkyl hydroperoxide reductase (ahpC) and catalase (katA) of the microaerophile Campylobacter jejuni is repressed by iron. Whereas iron repression in gram-negative bacteria is usually carried out by the Fur protein, previous work showed that this is not the case in C. jejuni, as these genes are still iron repressed in a C. jejuni fur mutant. An open readin...

متن کامل

Non-selective regulation of peroxide and superoxide resistance genes by PerR in Campylobacter jejuni

Campylobacter jejuni is an important foodborne pathogen. The molecular mechanisms for the regulation of oxidative stress resistance have not yet been understood fully in this bacterium. In this study, we investigated how PerR (peroxide stress regulator) modulates the transcriptional regulation of both peroxide and superoxide resistance genes in C. jejuni, particularly under oxidative stress con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 113 1  شماره 

صفحات  -

تاریخ انتشار 2016